
Glycoconjugate J (1985) 2:105--108 

Preliminary Communication 

Selective Synthesis of Cerebrosides: (25", 3R, 4E)-I- 
O-13-D-galactopyranosyi-N-(2'R and 2'S)-2'hydroxy- 
tetracosanoyl-sphingenine* 

KATSUYA KOIKE, MAMORU SUGIMOTO, YOSHIAKI NAKAHARA and 
TOM OYA O GAWA** 

RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351--01 Japan 

Received March 23, 1985. 

Key words:.cerebroside, synthesis, 1H-NMR 

The cerebrosides were first isolated by Thudicum in 1874 and the structures were estab- 
lished byCartereta l ,  in 1950 (for review, see [2]). In 1961 Shapiro and Flowers [3] reported 
the f irsttotal synthesis of a cerebroside 1 (Fig. 1)which was identif ied wi th the natural 
sample, on ly through comparison of their i.r. data. In order to confirm the absolute con- 
figuration at C-2' of natural cerebroside 1, we describe here an unambiguous synthesis 
of two stereoisomeric cerebrosides 1 and 2, and found that the 1H-NMR spectra of the 
synthetic 1 (Fig. 2) was completely identical with that of the natural cerebroside report- 
ed recently by Dabrowski et al. [4]. 

In planning the synthetic route, the target structures 1 and 2 were disconnected at the 
dotted lines to give three key synthetic intermediates 3, 4 and 5 or 6 (Fig. 1). 

Abbreviations: Bu, butyl; Ph, phenyl; t-BuPh2SiCI, t-butyldiphenylsilyl chloride; MTPA, c~-methoxy-c~-t rifluoro- 
methylphenylacetic acid; THF, tetrahydrofuran. 

*Part 36 in the series "Synthetic Studies on Cell-surface Glycans", for part 35, see [1]. 

**Author for correspondence 
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Figure 1. Key intermediates. Abbreviations: EE, ethoxyethyl; SitBuPh2, t-butyldiphenylsilyl. 

H-6a 

H-I 4 . 0 9 5 ( 7 , 3 )  
(0) H-4 3 , 6 ~ 2 ( 1 . 5 )  H-6b 

H-6o 3 , $ 5 5 ( 5 . 9 ;  1 ! . 0 )  *~1 
H-6b 3 , 5 0 0 ( 5 . 9 ; 1 1 , 7 )  H-2' H-T'O 
H-'ra 3 . 9 1 0 ( 5 . 9 ;  1 0 . 5 )  H-2" H-4 ~ [ 
H-rb 3 . 5 5 2 { 5 . 9 ;  9 , 1 )  
H-$" 6 , 0 0 ~ ) { 7 . 0 ]  I 3. H-r~l 

H-5' H-4' H-5" 5 . 5 8 7 ( 7 . 3 ;  1 7 . 0 )  

5 

~ - 5 ~ 5 , 5  5 ( 5 , 7 ; 1 0 . Z )  4. ~1 H-2" - H-6o 
H-To 5 . 5 9 6 ( 5 . ~ ;  1 1 , 0 )  [~ I [ | 1'L1 H' fb 
H-rb 5 . 4 4 0 ( 4 . 8 1 1 1 . 0 )  iiw -- 

H-5" H-4' 5 . 5 2 t ( 7 . 8 ; f 5 . 4 )  I111 I Jill 

.-..r4c-P-- ~> ~,.: 

Figure 2.400 MHz 1H-N MR of (a) synthetic (2'R)-cerebroside 1, and (b) synthetic (2'S)-cerebroside 2. The spect- 
ra were recorded at 65~ in 2H6-dimethylsulfoxideFH20, 49/1 by vol, for the sample after exchanging three 
times with 2H20. Values of GH are expressed in ppm downward from internal standard tetramethylsilane. Va- 
lues of 3JHH (Hz) are described in parentheses. 
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Figure g. Synthetic scheme. Abbreviations: Bz, benzoyl; MTPA, a-methoxy-c~-trifluoromethylphenylacetic 
acid. 

The D-galactosyl donor 3 [5] and the (2S, 3R, 4E)-sphingenine derivative 4 [6] are already 
reported. The protected hydroxyacids 5 and 6 are readily prepared as follows (Fig. 3). Et- 
hyl (2S)-2-acetoxy tetracosanoate 7, laiD 44.2 ~ (C 1.58, CHCI3), obtainable [7] from (S)-(-)- 
malic acid was transformed into 6, [O~]D +10.3 ~ (C 0.91, CHCI3) m.p. 49-50~ Rr 0.50 in n- 
hexane/EtOAc, 4/1 by vol, in 77% overall yield in 3 steps: (i) NaOMe in MeOH/THF, 1/1 
by vol, (ii) t-BuPh2SiCI-imidazole in dimethylformamide, (iii) NaOH in MeOH~HF, 
1/1 by vol. In a similar way, (R)-2-t-butyldiphenylsilyloxytetracosanic acid 5, laiD -11.6 ~ 
(C 0.29, CHCI3), m.p. 48-49~ could be prepared in 50% overall yield from 8 [the (-)-MTPA 
ester showed that 8 was obtained in 96.2%ee] in 4 steps (via 11, 12 and 13): (i) Ph3P- 
PhCOOH-diethyl azodicarboxylate in THF [8], (ii) NaOMe in MeOH/THF, 1/1 by vol, (iii) 
t-BuPh2SiCI/4-dimethylaminopyridine in pyridine, (iv) NaOH in MeOH/THF, 1/1 by vol. 

400 MHz 1H-NMR of the (-)MTPA esters [9], (S)-10 and (R)-14, which were obtainable, re- 
spectively, from 6 and 5 in 3 steps; (i) CH2N2, (ii) Bu4NF in THF, (iii) (-)-MTPA chloride in 
pyridine, showed that (S)-10 and (R)-14 were obtained in 97.0% ee and 95.4% ee, respective- 
ly, and that no significant racemization occurred during these transformations. 

A solution of 4 and (R)-acid 5 in CH2CI= was treated with 1,3-dicycl0hexylcarbodiimide 
in the presence of hyd roxy benzotriazole to give a 92% yield of completely protected (2S 
3R, 4E, 2'R)-ceramide 15, Rr 0.52 and 0.45 in n-hexane/EtOAc, 4/1 by vol, which was solvo- 
lysed in MeOH/CH2Cl2, 1/~1 by vol, in the presence of Amberlist | 15 to afford a 67% yield 
of the desired product 17, [O~]D +6.4 ~ (C 1.13, CHCI3), m.p. 44-45~ RF 0.30 in n-hexane/ 
EtOAc, 7/3 by" vol. Treatment of 17 with Bu4NF in THF afforded (2S, 3R, 4E, 2'R)-ceramide 
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19, [~]D +8.7 ~ (C 1.13, CHCI3/MeOH, 9/1 by vol), m.p 98-99~ RF 0.45 in CHCI3/MeOH, 9/1 
by vol. 

In a similar manner, 4 was condensed with (S)-acid 6 to give a 90% yield of completely 
protected (2S, 3R, 4E, 2'S)-ceramide 16, RF 0.62 and 0.55 in n-hexane/EtOAc, 4/1 by vol, 
which was further transformed into the oily glycosyl acceptor 18 (62%), [C~ID -6.4 ~ (C 1.91, 
CHCI3), RF 0.46 in n-hexane/EtOAc, 7/3 by vol. Desilylation of 18 with fluoride anion gave 
an 80% yield of (2S, 3R, 4E, 2'5)-ceramide 20, [~]D 41.1 ~ (C 1.41, CHCIJMeOH, 9/1 by vol), 
m.p. 100401~ RF 0.51 in CHCIjMeOH, 9/1 by vol. 

Crucial glycosylation of (2'R)-ceramide 17with galactopyranosyl trichloroacetimidate 3 
in CHCI3 in the presence of BF3-ether and molecular sieves 4A according to the method 
of Schmidt and Michel ~5] afforded a 33% yield of the protected (2'R)-cerebroside 21, 
[c~]D +1.6 ~ (c 1.12, CHCI3), RF 0.45 in CHCI3/MeO14, 49/1 by vol. Complete deprotection of 
21, by (i) Bu4NF in THF, (ii) NaOMe-MeOH, afforded a 62% yield of (2'R)-cerebroside 1, 
[~]u +8-5 ~ (c 0.40, CHCI3/MeOH, 1/1 byvol), R~ 0.37 in CHCI3/MeOH, 17/3 by vol. Similarly, 
(2'S)-ceramide 18 was transformed into the protected cerebroside 22 (31%), [~]D -2.8 ~ (C 
1.09, CHCI3), RF 0.61 in CHCIjMeOH, 49/1 by vol, which was further deprotected to af- 
ford (2'S)-cerebroside 2 (78%), [C~]D -25.2 ~ (C 0.48, CHCIjMeOH, 1/1 by vol), RF 0.48 in 
CHCI3/MeOH, 17/3 by vol. 

In conclusion, (2'R) and (2'S)-cerebrosides 1 and 2 were synthesized in a stereo-controll- 
ed way and their ~H-NMR data (Fig. 2) provided the conclusive evidence for the stereo- 
chemical assignment of the natural cerebroside. 
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